Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames
نویسندگان
چکیده
Auto-regressive (AR) time series (TS) models are useful for structural damage detection in vibration-based health monitoring (SHM). However, certain limitations, e.g., non-stationarity and subjective feature selection, have reduced its wide-spread use. With increasing trends machine learning (ML) technologies, automated recognition is becoming popular attracting many researchers. In this paper, we combined TS modeling ML classification to automatically extract features overcome the limitation of non-stationarity. We propose a two-stage framework, namely auto-regressive integrated moving-average (ARIMA-ML) with modules pre-processing, model parameter determination, extraction, classification. Based on shaking table tests space steel frame, floor acceleration data were collected labeled according experimental observations records. Subsequently, designed three tasks for: (1) global detection, (2) local (3) pattern recognition. The results from these indicated robustness accuracy proposed framework where 97%, 98%, 80% average segment achieved, respectively. confusion matrix showed unbiased performance even under an imbalanced-class distribution. summary, presented study revealed high potential ARIMA-ML SHM.
منابع مشابه
Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملA spatiotemporal auto-regressive moving average model for solar radiation
To investigate the variability in energy output from a network of photo-voltaic cells, solar radiation was recorded at ten sites every ten minutes in the Pentland Hills to the south of Edinburgh. We identify spatio-temporal auto-regressive moving average (STARMA) models as the most appropriate to address this problem. Although previously considered computationally prohibitive to work with, we s...
متن کاملA new hybrid for improvement of auto-regressive integrated moving average models applying particle swarm optimization
A time series forecasting is an active research applied significantly in a variety of economics areas. Over the past three decades an auto-regressive integrated moving average (ARIMA) model, as one of the most important time series models, has been applied in financial markets forecasting. Recent researches in time series forecasting ARIMA models indicate some basic limitations which detract fr...
متن کاملHybrid Fuzzy Auto-Regressive Integrated Moving Average (FARIMAH) Model for Forecasting the Foreign Exchange Markets
Improving forecasting especially time series forecasting accuracy is an important yet often difficult task facing forecasters. Fuzzy autoregressive integrated moving average (FARIMA) models are the fuzzy improved version of the autoregressive integrated moving average (ARIMA) models, proposed in order to overcome limitations of the traditional ARIMA models; especially data limitation, and yield...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11136084